QR-Decomposition and Diagonalization

- Let A be an $m \times n$ matrix. Then A has linearly independent column vectors iff $A^T A$ is invertible.
- **QR-Decomposition**: Let *A* be an $m \times n$ matrix with linearly independent column vectors. Then A = QR, where *Q* is an orthogonal matrix (i.e. matrix with orthonormal column vectors), and *R* is an $n \times n$ invertible upper triangular matrix.
 - Find Q by performing the Gram-Schmidt process on the columns vectors of A before normalizing each vector.
 - Find *R*: Suppose that $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ are the column vectors of *A* and $\vec{u}_1, \vec{u}_2, ..., \vec{u}_n$ are the column vectors of *Q* as determined previously. Then $r_{ij} = \vec{u}_i \cdot \vec{v}_j$, where r_{ij} is the (i, j) entry of *R* if $i \le j$, 0 otherwise.

• Property:
$$|\det A| = |\det R| = \left|\prod_{i=0}^{n} r_{ii}\right| = \left|\prod_{i=0}^{n} \lambda_i\right|$$

- Applications: least squares problem, finding eigenvalues
- The eigenvalues associated with distinct eigenvectors are linearly independent.
- Eigenspace of an eigenvalue is the dimension of its associated eigenvectors.
- Geometric multiplicity of an eigenvalue is the dimension of its eigenspace.
- Algebraic multiplicity of an eigenvalue is its multiplicity in the characteristic polynomial det $(A \lambda I)$
 - The geometric multiplicity of an eigenvalue is at most the algebraic multiplicity
 - A matrix is defective iff the geometric multiplicity of each eigenvalue is its algebraic multiplicity
- An $n \times n$ matrix A is **diagonalizable** if there exists an invertible matrix P and a diagonal matrix D such that $D = P^{-1}AP$.
 - A matrix is diagonalizable iff it is not defective (i.e. an $n \times n$ matrix A is diagonalizable iff it has n independent eigenvectors).
 - D is an $n \times n$ diagonal matrix with the eigenvalues of A as its diagonal entries, while P is the matrix with its corresponding independent eigenvectors as its columns.
 - $\circ \quad A = PDP^{-1}$
 - This is called the **eigendecomposition** or **spectral decomposition**.

$$A^k = PD^k P^-$$

- Any symmetric matrix is **orthogonally diagonalizable**, or that there exists an orthogonal matrix Q and diagonal matrix D such that $D = Q^T A Q$
 - A matrix is symmetric iff it is orthogonally diagonalizable
 - Symmetric matrices are never defective
 - $A = QDQ^T$, where *D* is an $n \times n$ diagonal matrix with the eigenvalues of *A* as its diagonal entries, while *P* is the matrix with its corresponding normalized eigenvectors as its columns.